Bujnicki lab - FNP (TEAM)
  • RNA has recently emerged as an attractive target for new drug development. Our team is developing new methods to study the interactions between RNA and ligands. Recently, we have developed a new machine learning method called AnnapuRNA to predict how small chemical molecules interact with structured RNA molecules. Research published in PLoS Comput Biol. 2021 Feb 1;17(2):e1008309. doi: 10.1371/journal.pcbi.1008309. Read More
  • 1

About Laboratory Of Bioinformatics And Protein Engineering

Our group is involved in theoretical and experimental research on nucleic acids and proteins. The current focus is on RNA sequence-structure-function relationships (in particular 3D modeling), RNA-protein complexes, and enzymes acting on RNA.
 
We study the rules that govern the sequence-structure-function relationships in proteins and nucleic acids and use the acquired knowledge to predict structures and functions for uncharacterized gene products, to alter the known structures and functions of proteins and RNAs and to engineer molecules with new properties.
 
Our key strength is in the integration of various types of theoretical and experimental analyses. We develop and use computer programs for modeling of protein three-dimensional structures based on heterogenous, low-resolution, noisy and ambivalent experimental data. We are also involved in genome-scale phylogenetic analyses, with the focus on identification of proteins that belong to particular families. Subsequently, we characterize experimentally the function of the most interesting new genes/proteins identified by bioinformatics. We also use theoretical predictions to guide protein engineering, using rational and random approaches. Our ultimate goal is to identify complete sets of enzymes involved in particular metabolic pathways (e.g. RNA modification, DNA repair) and to design proteins with new properties, in particular enzymes with new useful functions, which have not been observed in the nature.
 
We are well-equipped with respect to both theoretical and experimental analyses. Our lab offers excellent environment for training of young researchers in both bioinformatics and molecular biology/biochemistry of protein-nucleic acid interactions.


More Good Science

FNP (TEAM): Modeling of dynamic interactions between RNA and small molecules and its practical applications (POIR.04.04.00-00-3CF0/16-00); 3 449 541 PLN; 2017-2020. PI: J.M.Bujnicki, vice-PI: F.Stefaniak


Ribonucleic acid (RNA) molecules play pivotal roles in living organisms. They are involved in a variety of biological processes: they transmit genetic information, they sense and communicate responses to cellular signals, and even catalyze chemical reactions. The cellular and molecular functions of RNAs depend on the structure of the ribonucleotide chain and on interactions with other molecules, which are defined by the ribonucleotide sequence. Structures and functions of RNAs are often modulated by chemical compounds, including naturally occurring molecules as well as compounds obtained by synthetic organic chemistry. Many RNA molecules are known or predicted targets of small molecule drugs, and the continuous discovery of new functional RNAs involved in various biomedically important processes increases the demand on the development of new small molecules targeting RNA, and on methods for analyzing RNA-small molecule ligand interactions.

Unfortunately, the advancement of computational methods for predicting RNA-ligand interactions lags behind the analogous methods for analyzing protein-ligand interactions. In particular, there is a dearth of computational methods for modeling the 3D structure and dynamics of RNA-ligand complexes. Currently, it is almost impossible to computationally predict structures of RNA-ligand complexes that involve large conformational changes of the RNA upon ligand binding, or that are stable only in the presence of the ligand, unless very similar structures are already known. This situation hampers equally basic studies of RNA sequence-structure-function relationships, and applied research on the development of small molecule regulators of biomedically important RNAs.

In this research project, we develop and experimentally validate a general-purpose computational method for predicting RNA-ligand interactions that can model conformational changes. The new method enables simulations of conformational changes in RNA in response to ligand binding, such as those in riboswitches, which are currently out of reach for existing programs. It also extends the range of applications involving the prediction of potential ligands for target RNAs in the context of virtual screening.

We also test our computational approach in practice. It is applied to study the basic mechanism of action of RNAs known to be regulated by small molecules, e.g., riboswitches. We look for novel inhibitors for RNAs from bacterial and viral pathogens, like RNA promoter of influenza A or hepatitis C virus (HCV) and internal ribosome entry site (IRES). Such holistic and interdisciplinary approach enables us not only to verify the developed computational methods but also significantly expands the knowledge of the nature of RNA, with possible practical applications in many areas of science and industry.

 

Publications resulting from and supported by the project:

Ponce-Salvatierra A, Astha, Merdas K, Nithin C, Ghosh P, Mukherjee S, Bujnicki JM
Computational modeling of RNA 3D structure based on experimental data.
Biosci Rep. 2019 Feb 8;39(2).

Nithin C, Ghosh P, Bujnicki JM
Bioinformatics Tools and Benchmarks for Computational Docking and 3D structure prediction of RNA-protein complexes
Genes (Basel). 2018 Aug 25;9(9). pii: E432. doi: 10.3390/genes9090432.

Kumari P, Aeschimann F, Gaidatzis D, Keusch J, Ghosh P, Neagu A, Pachulska-Wieczorek K, Bujnicki JM, Gut H, Grosshans H, Ciosk R
Evolutionary plasticity of the NHL domain underlies distinct solutions to RNA recognition.
Nat Commun. 2018 Apr 19;9(1):1549.